Math 250
Fall 2013

Quiz 4

1. (10 pts)

Find the inverse of the following elementary matrix. Show that it is indeed the inverse.

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Answer: The inverse is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Check:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

2. (10 pts)

$$
A^{-1}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 0 & 1 \\
1 & 1 & -1
\end{array}\right] ; B^{-1}=\left[\begin{array}{ccc}
2 & -1 & 3 \\
0 & 0 & 4 \\
3 & -2 & 1
\end{array}\right]
$$

Find $\left(A B^{T}\right)^{-1}$.
Answer: $\left(A B^{T}\right)^{-1}=\left(B^{T}\right)^{-1} A^{-1}=\left(B^{-1}\right)^{T} A^{-1}$.
So the answer is

$$
\left[\begin{array}{ccc}
2 & 0 & 3 \\
-1 & 0 & -2 \\
3 & 4 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
5 & 7 & 3 \\
-3 & -4 & -1 \\
12 & 7 & 12
\end{array}\right]
$$

